The Impact of Soil Conductivity on Petit Verdot Ripeness and Wine Quality in VSP Trellising (in collaboration with Bubba Beasley) (2017)

This study attempts to quantify the impact of soil conductivity on VSP-trained Petit Verdot juice and wine chemistry, as well as on the sensory qualities of wine. Soil conductivity was determined by EM mapping performed by Bubba Beasley, in order to find areas of low and high conductivity within the vineyard block. The low conductivity soil had a low rock content, and the high conductivity soil had high rock content (75%, shale). Then, fruit from each conductivity region was harvested on the same day but kept separate and destemmed into two T Bins: One for low conductivity fruit, and the other for high conductivity fruit. Fermentations were punched down twice per day, and all other treatments between wines were identical. Yield and viticultural parameters suggest an ESVC:CW index of 1.2 for both the low conductivity and high conductivity. Acidity and potassium was higher in the high conductivity juice. Indeed, soil pH was found to be negatively correlated to petiolar potassium and positively correlated to fruit pH. Petiolar potassium was also found to be positively correlated to juice potassium. Wine made from higher conductivity grapes had higher acidity and lower potassium. The high conductivity treatment had slightly lower anthocyanin and tannin measures. These results, overall, suggest that the lower conductivity wine had generally “riper” characteristics. These results would not be expected, as the higher conductivity soil (with higher rock content) would be expected to have less total available water in the soil for the grapevines to use. It would be more expected, therefore, that the high conductivity vine would have had less water, and thus potentially more “ripe” chemistry characteristics. Overall, the wines were not found to be significantly different at tastings. There may have been a slight preference for the low conductivity wine, but if so it was very weak. There were slight tendencies for the high conductivity treatment to have higher Acidity and Bitterness, and slightly lower Body. These further suggest a less “ripe” wine was produced at the high conductivity block. This study should be repeated over multiple vintages in order to determine whether these results are replicable.

This study should be read with its companion study in Ballerina trellising.

Read Full Report (PDF)