The Impact of Soil Conductivity on Petit Verdot Ripeness and Wine Quality in Ballerina Trellising (in collaboration with Bubba Beasley) (2017)

This study attempts to quantify the impact of soil conductivity on ballerina-trained Petit Verdot juice and wine chemistry, as well as on the sensory qualities of wine. Soil conductivity was determined by EM mapping performed by Bubba Beasley, in order to find areas of low and high conductivity within the vineyard block. The low conductivity soil had lower soil rock content (10%, channers), and the high conductivity soil had higher rock content (50%, shale). Then, fruit from each conductivity region was harvested on the same day but kept separate, and destemmed into two T Bins: One for low conductivity fruit, and the other for high conductivity fruit. Fermentations were punched down twice per day, and all other treatments between wines were identical. Average berry weight and cluster weight were slightly higher in the high conductivity treatments. Yield and viticultural parameters suggest an ESVC:CW of 1.7 and 1.9 for the low conductivity and high conductivity, respectively. Juice Brix and potassium was lower, and acidity and nitrogen were higher in the high conductivity treatment. These differences transferred through to wine chemistry. The high conductivity treatment seemed to have lower levels of phenolic compounds, and lower color. These results, overall, suggest that the lower conductivity wine had generally “riper” characteristics. These results would not be expected, as the higher conductivity soil (with higher rock content) would be expected to have less total available water in the soil for the grapevines to use. It would be more expected, therefore, that the high conductivity vine would have had less water, and thus potentially more “ripe” chemistry characteristics. Overall, these wines were not found to be significantly different in triangle testing. No preference trends could be seen. Additionally, descriptive analysis results were inconsistent between tastings, and no general trends can be seen except perhaps that the high conductivity wine had slightly lower Body. In the future, this study should be repeated over multiple vintages, on different grape varieties, and at different sites.

This study should be read with its companion study in VSP trellising.

Read Full Report (PDF)